Interpolation, box splines, and lattice points in zonotopes

نویسنده

  • Matthias Lenz
چکیده

Given a finite list of vectors X ⊆ R, one can define the box spline BX . Box splines are piecewise polynomial functions that are used in approximation theory. They are also interesting from a combinatorial point of view and many of their properties solely depend on the structure of the matroid defined by the list X . The support of the box spline is the zonotope Z(X). We show that if the list X is totally unimodular, any real-valued function defined on the set of lattice points in the interior of Z(X) can be extended to a function on Z(X) of the form p(D)BX in a unique way, where p(D) is a differential operator that is contained in the so-called internal P-space. This was conjectured by Olga Holtz and Amos Ron. We also point out connections between this interpolation problem and matroid theory, including a deletion-contraction decomposition. Résumé. Étant donné une liste finie de vecteurs X ⊆ R, on peut définir la box spline BX . Les box splines sont des fonctions continues par morceaux qui sont utilisées en théorie de l’approximation. Elles sont aussi intéressantes d’un point de vue combinatoire et beaucoup de leurs propriétés dépendent uniquement de la structure du matroı̈de défini par la liste X . Le support de la box spline est le zonotope Z(X). Si la liste X est totalement unimodulaire, nous démontrons que toute fonction à valeurs réelles définie sur l’ensemble des points du réseau à l’intérieur de Z(X) peut être étendue à une fonction sur Z(X) de la forme p(D)BX de manière unique, où p(D) est un opérateur différentiel qui est contenu dans l’espace appelé P-interne. Cela a été conjecturé par Olga Holtz et Amos Ron. Nous indiquons aussi des relations entre ce problème d’interpolation et la théorie des matroı̈des, en plus d’une décomposition suppressions-contractions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS

In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.

متن کامل

DC-Splines: Revisiting the Trilinear Interpolation on the Body-Centered Cubic Lattice

In this paper, we thoroughly study a trilinear interpolation scheme previously proposed for the Body-Centered Cubic (BCC) lattice. We think that, up to now, this technique has not received the attention that it deserves. By a frequency-domain analysis we show that it can isotropically suppress those aliasing spectra that contribute most to the postaliasing effect. Furthermore, we present an eff...

متن کامل

Optimal Sampling Lattices and Trivariate Box Splines

The Body Centered Cubic (BCe) and Face Centered Cubic (FCC) lattices along with a set of box splines for sampling and reconstruction of trivariate functions are proposed. The BCC lattice is demonstrated to be the optimal choice of a pattern for generic sampling purposes. While the FCC lattice is the second best choice for this purpose, both FCC and BCC lattices significantly outperform the accu...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Symmetric box-splines on the A*n lattice

Sampling and reconstruction of generic multivariate functions is more efficient on non-Cartesian root lattices, such as the BCC (Body-Centered Cubic) lattice, than on the Cartesian lattice. We introduce a new n × n generator matrix A that enables, in n variables, for efficient reconstruction on the non-Cartesian root lattice An by a symmetric box-spline family M r . A2 is the hexagonal lattice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012